Accepted Manuscript

On Bitcoin markets (in)efficiency and its evolution Wﬂflﬂ'ﬂ‘-ﬂﬁfﬁf'

Ladislav Kristoufek

PII: S0378-4371(18)30241-3 i
DOI: https://doi.org/10.1016/j.physa.2018.02.161
Reference: PHYSA 19281

To appear in:  Physica A

Please cite this article as: L. Kristoufek, On Bitcoin markets (in)efficiency and its evolution,
Physica A (2018), https://doi.org/10.1016/j.physa.2018.02.161

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.physa.2018.02.161

*Highlights (for review)

Highlights:
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used.

e We find strong evidence of both Bitcoin markets remaining mostly inefficient between
2010 and 2017.

e Markets are efficient only during cooling-downs after bubble-like price surges.
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Abstract

We study efficiency of two Bitcoin markets (with respect to the US dollar and Chinese
yuan) and its evolution in time. As inefficiency can manifest through various channels, we
utilize the Efficiency Index of Kristoufek & Vosvrda (2013, Physica A 392, pp. 184-193)
which can cover different types of (in)efficiency measures. We find strong evidence of both
Bitcoin markets remaining mostly inefficient between 2010 and 2017 with exceptions of
several periods directly connected to cooling down after the bubble-like price surges.

Keywords: Bitcoin, efficient market hypothesis, efficiency index, long-range dependence,
fractal dimension, entropy

1. Introduction

Bitcoin [1] as the most popular cryptocurrency with the highest historical capitalization
of around $175 billion (as of the end of November 2017)* has gone a long path from its rather
controversial beginnings [2] to its current status. Even though its legal and institutional
state has not been properly solved yet, its popularity and completely unprecedented price
growth? have attracted attention of big institutional players as well as small (amateur)
investors looking for “easy profits”.

Early research studies of Bitcoin focused primarily on its security, legal, and technical
issues [3-6]. Since 2013, studies focusing on the financial aspects of the cryptocurrency
have started to emerge as well [7-11]. As Bitcoin started becoming more known to the
financial community, the topics of interest have moved closer to the traditional economics
and financial issues. Studying whether the Bitcoin markets can be considered as standard
financial markets with some relationship to the efficient market hypothesis (EMH) [12, 13]
has been one of these important questions. Urquhart [14] studies the Bitcoin market from
its beginnings in 2010 to mid-2016 and suggests that the market is inefficient but it is
moving closer towards efficiency in time. Nadarajah & Chu [15] dispute these results and
conclude that the market is in fact efficient. Bariviera et al. [16, 17] study the dynamics of
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! According to https://coinmarketcap.com.
2Even if we do not consider the very beginnings of Bitcoin, its price rocketed from around $13 in 2013
to around $10,000 as of end of November 2017 accounting to a 76,700% growth over mere 5 years.
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long-range dependence properties of the Bitcoin price and find a trend towards efficiency.
Similar results are found by Alvarez-Ramirez et al. [18]. These results serve as a basic
motivation for the current study.

We focus on the efficiency of two Bitcoin markets (with respect to the US dollar and
Chinese yuan as the most prominent markets) and its evolution in time. As inefficiency
can manifest through various channels, we utilize the Efficiency Index [21] which can cover
different types of (in)efficiency measures. In the following section, we introduce the index
together with its components — specifically, long-range dependence, fractal dimension, and
entropy — and we discuss its statistical properties proposing a novel way of approaching
the issue. Following section describes the dataset and last section provides results with
some further discussion. We find strong evidence that both Bitcoin markets have remained
mostly inefficient between 2010 and 2017 with exceptions of several periods directly con-
nected to cooling down after the bubble-like price surges.

2. Methods

When constructing tests for the market efficiency, it is essential to consider statistical
and dynamic implications of the theory. The two historical building blocks of the current
EMH lead to two different processes of the efficient market. Based on Fama [19], the
efficient market follows a random whereas Samuelson [20] argues that a martingale is an
appropriate description of such market. Of the two, we use the less restrictive one, i.e.
the martingale specification of the efficient market (log-)price process, which implies that
the (log-)returns series are serially uncorrelated (there is no statistically significant auto-
correlation structure). The random walk specification would require the returns to have
the Gaussian distribution as well which we consider unnecessarily restrictive. Such a simple
description of the efficient market in the EMH logic gives direct implications of expected
values of some useful statistics and parameters of dynamic series that can be used to test
and measure efficiency of a capital market. We use these to construct the Efficiency Index
which takes into consideration more measures of market efficiency.

2.1. Capital market efficiency measure
Kristoufek & Vosvrda [21-24] define the Efficiency Index (EI) as

IENDY (%) : (1)

i=1

where M; is the ¢th measure of efficiency, J\Z is an estimate of the ¢th measure, M is
an expected value of the ¢th measure for the efficient market and R; is a range of the ith
measure. The index is then a distance from the efficient market situation and it can be
based on a combination of efficiency measures as long as these measures are bounded. This
turns out to be a rather restrictive condition, yet still there are various choices of methods
that can be utilized for the index construction. We stick to the original articles [21-24]



and use measures of long-range dependence, fractal dimension and entropy to construct
the index. Long-range dependence parameter Hurst exponent H has an expected value of
0.5 for the efficient market (M}, = 0.5), fractal dimension D has an expected value of 1.5
(M}, = 1.5), and the approximate entropy has an expected value of 1 (M7}, = 1). All three
parameters have a restricted range which, however, is not the same for all three. As the

approximate entropy range is higher, we need to rescale its effect and we have R p = 2
and RD = RH =1.

2.2. Long-range dependence and its estimators

Long-range dependent (long-term correlated) processes are defined both in time and
frequency domain. In the time domain, their autocorrelation function p(k) with time
lag k decays as p(k) oc k*1=2 for k — +oo. In the frequency domain, their spectrum
f(\) with frequency X scales as f(A\) oc A172H for A — 0+ [25-27]. Hurst exponent H
is the characteristic parameter of the long-term correlated processes. The anti-persistent
processes with H < 0.5 switch their sign more frequently than uncorrelated processes.
Processes with no long-range dependence have H = 0.5, and the persistent processes have
H > 0.5. Stationary processes have H < 1. As the efficient market has no non-zero
correlation structure, it has also no long-term memory. Therefore, the expected value of
the Hurst exponent for the efficient market is H = 0.5. There are many estimators of Hurst
exponent with different properties and sensitivities to different features of examined series
26, 28-33]. We utilize two estimators that are suitable for short time series with possible
short-term memory — the local Whittle estimator and the GPH estimator [25, 27-29, 34].

2.8. Fractal dimension

Contrary to long-range dependence, which is a global description of the correlation
structure of the series, fractal dimension D is usually interpreted as a measure of local
correlation structure of the series as it describes roughness of the series [21]. For univariate
series, fractal dimension ranges between 1 < D < 2 and the central point D = 1.5 covers
the serially uncorrelated processes. This gives the value of D for the efficient market Low
levels of fractal dimension suggest lower roughness and thus local positive auto-correlation
dynamics. Then high fractal dimension is attached to rougher series which are locally
negatively auto-correlated. As parts of the Efficiency Index, we use two estimators that
have desirable statistical properties for short time series — the Hall-Wood and Genton
estimators [35, 36].

2.4. Approzimate entropy

In the time series analysis, entropy is a complexity measure. Series with high entropy
have little or no information in the system connected to high uncertainty. Low entropy
series can be seen as deterministic, i.e. predictable [37]. From the perspective of an
efficient market, maximum entropy yields efficiency as the high entropy series are serially
uncorrelated. With the lower entropy, markets become less efficient. In the Efficiency
Index, we use the approximate entropy which is bounded (contrary to other versions of
entropy) [38].



2.5. Statistical inference and moving window estimation

The analysis is based on estimating the Efficiency Index with respect to Eq. 1. How-
ever, statistical properties or liming distribution under the null hypothesis have not been
developed mainly due to the fact that the index values are dependent on the specific ef-
ficiency measures that are incorporated. The limiting distribution should thus be studied
for each specific case. We approach this issue by constructing its distribution under the
null hypothesis of an efficient market using bootstrapping. Specifically, we follow these
steps:

1. Estimate EI for the original series.

2. Use the original returns series to construct bootstrapped (with replacement) series
with the same number of observations.

3. Estimate EI for the bootstrapped series.

4. Repeat Steps 2 and 3 many times (333 in our specific case).

5. Find critical values of the EI under the null hypothesis of an efficient market as
quantiles of the bootstrapped estimates for selected significance level (in our case,
we work with 90% level, i.e. we get the 5th and 95th quantiles of the distribution of
the bootstrapped estimates).

6. Compare the original estimated EI (in Step 1) with the critical values from the
previous step. If the original estimate is within the critical values, the hypothesis
of an efficient market is not rejected. If the original estimate is outside, the null
hypothesis is rejected and the studied series is considered as inefficient.

Logic behind the procedure is straightforward. The bootstrapping produces serially uncor-
related (independent, in fact) series with the same distributional properties as the original
one. The distribution of the original series and its possible influence on specific estimators
is thus taken into consideration.

We are interested in studying evolution of the market efficiency. To do so, we examine
the series on the moving window. As the Bitcoin markets are opened 24/7, we study a
window of a size of 365 trading days. For this window, the above-mentioned procedure is
performed and we obtain the estimate, critical values and p-value. The window is then
moved by 7 days (1 week) and the procedure is repeated until the end of the analyzed
period. Eventually, we obtain the time series of the estimates, critical values and p-values
so that we are able to comment on the efficiency evolution over the analyzed period.

3. Data

We examine two Bitcoin price indices constructed by the CoinDesk platform (coin-
desk.com) — the USD-based one and the CNY-based one. The indices are based on average
prices over the major Bitcoin exchanges for the given currency. For the USD, the index is
based on the Bitstamp, Coinbase, itBit and Bitfinex exchanges. The CNY index uses the



OKCoin exchange as it is the only one meeting the criteria set by CoinDesk?.
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Figure 1: Bitcoin price index. Price evolution of Bitcoin price indices (black curve) for USD (left)
and CNY (right) based on https://www.coindesk.com/price/bitcoin-price-index/ is shown here
together with volatility (red curve) utilizing range-based estimators.

The Chinese yuan Bitcoin price index is available since 1 February 2014 and we study
its evolution till the end of July 2017 (1277 observations). For the US dollar Bitcoin price
index, it was founded on 18 July 2010 and we study its behavior from the very beginning
(2571 observations). Evolution of the indices is summarized in Fig. 1 together with the
volatility evolution®*. The prices are shown in the logarithmic scale and they show an
unprecedented growth from approximately $10 to around $3,000 at the end this period®.
Together with a strong positive trend in prices, we observe decreasing levels of volatility.
Until the end of 2016, volatility was in a rather stable decreasing trend but it started
booming in 2017 (and pretty much exploding for the CNY market).

4. Results and discussion

Efficiency of two Bitcoin price indices (USD and CNY) is studied via the Efficiency In-
dex, which combines effects of long-range dependence, fractal dimension, and approximate
entropy. We focus on the efficiency evolution from the foundation of the given indices till
the end of July 2017. To see how the Efficiency Index as a measure of efficiency evolves
in time, we study its estimates on the moving window. Specifically, we estimate the index
on 365 daily observations and we also calculate critical values for the null hypothesis of an
efficient market and connected p-value (based on 333 bootstrapped estimates). Resulting
evolution of the Efficiency Index for both USD and CNY market is illustrated in Fig. 2.

The results are quite straightforward. Starting with the USD market, we observe that
there are only two longer periods of time when the market can be considered as efficient —

3More details can be found on the CoinDesk website, specifically https://www.coindesk.com/price/
bitcoin-price-index/.

4Volatility is based on the range-based estimators and it is presented mostly for informative purposes.

5Note that between performing the analysis and finalizing the text, the price started attacking the level
of $10,000 at the end of November 2017.
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Figure 2: Evolution of the Efficiency Index. The Efficinecy Index (black curve) based on Eq. 1. is
estimated on 365 daily observations. The critical values (gray curves) for the null hypothesis of an efficient
market are based on 333 bootstrapped repetitions and they represent 5% and 95% quantiles. p-value (red
curve) for the null hypothesis of an efficient market is based on the whole distribution of the bootstrapped
estimates. Low p-values (with respect to the selected confidence level) thus represent inefficiency. The
rolling window is presented with a step of 7 days.

from the middle of 2011 to the middle of 2012, and between March and November 2014.
Both these periods follow after rapid price increases and they are characteristic by a rather
mild dynamics of the Bitcoin price. There are few short-lived efficient periods following
other slowdowns, namely at the end of 2012 and the second half of 2016. Apart from these
periods, the market efficiency is rejected regularly. The results are not as strong for the
CNY market as the examination period misses some very important bubble-like dynamics
before 2014. The only efficient periods are thus the ones of “cooling off” after price surges.
Apart from these, the Bitcoin markets are evidently inefficient and thus predictable.

To see the contributions of separate parts of the Efficient Index towards inefficiency, we
present Fig. 3. There we can see a division between long-range dependence, fractal dimen-
sion and entropy, which can be translated into the contribution of global correlations, local
correlations, and complex correlations. For the USD market and thus the longer analyzed
period, we observe some changes in the structure of inefficiency. Until 2014, entropy and
thus complex correlations played an important role which diminished in the more recent
years. As for the global correlations, their contribution remains rather stable over the
whole analyzed periods, and the original contribution of entropy has been overtaken by
fractal dimension. In the most recent years, the inefficiency is driven mostly by the local
correlations, i.e. short-term booms and busts. The later years of the USD market are
closely followed by the CNY market.

The evidence of inefficiency is strong and visible from the presented results. How is
it then possible that such inefficiencies remain and are not mined out by investors. This
is very likely connected to the Bitcoin market (and cryptocurrency markets in general)
characteristics. The market is still rather shallow and as such, it does not attract big
institutional players. This might change soon as some exchanges are getting close to
opening Bitcoin-based derivatives and assets copying Bitcoin price. Such change can have
an ambiguous effect on the price as the big players will increase demand for Bitcoin which
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Figure 3: Contributions to the Efficiency Index. For each time step of the rolling window, proportions
of the Efficiency Index are shown for long-range dependence (bottom), fractal dimension (middle), and

entropy (top).

cannot increase its supply above the algorithm-given amount. From the other side, the
deepening of the market usually leads to its increased efficiency and thus price stability
in the Bitcoin price. At this point, the relatively low liquidity (compared to the stock or
FOREX markets) does not ensure that an investor would be able to sell (or purchase) a
large amount of the cryptocurrency for the given price. In addition, the Bitcoin price is
still strongly driven by exogenous factors connected to its legal and /or security issues. The
beauty of decentralization and low or no regulations can be pricy as well as conditions at
different exchanges can vary strongly being it e.g. high transaction fees (not necessarily
trading fees, but deposit and withdrawal fees) or (in)ability to withdraw the funds and
transfer them to the fiat currency. The difference between being “in-the-money” and
making an actual profit can be appreciable. Another complication in calculating actual
profits arises when it comes to taxation. Country policies vary strongly as well and the
discussion about the value-added tax (VAT) and income tax with respect to the crypto-
world is still ongoing. Investors “cashing out” their bitcoins can then be on the edge of
legality. Either way, the future evolution of Bitcoin and its price remains an exciting topic
which will likely keep attracting attention both in the research community and in the
investors community being it big institutional players or amateur enthusiasts.
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